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Investigation into the dynamic behaviour of rolling element bearings is
motivated by the urge to reduce vibrations in rolling bearing applications. The
dynamics of the bearing is governed by both the dynamics of its structural
elements, i.e., the inner ring, the outer ring and the rolling elements, and the
elastohydrodynamic lubricated (EHL) contacts connecting these structural
elements. To investigate the e�ect of the lubricant on the dynamic behaviour of
deep groove ball bearings, computational models have been developed for both
the EHL problem and the structural dynamics problem. In the present study,
the interaction between the structural elements is described by means of a non-
linear spring-damper model which is based on numerical solutions of the full
EHL contact problem. These relations have subsequently been adopted in the
structural dynamics bearing model. Using these models, the shift of bearing
eigenfrequencies as a result of lubrication is investigated and modal damping
values for the preloaded bearing are estimated. It is suggested that the shift of
the eigenfrequencies is mainly caused by contact angle variations.

# 1999 Academic Press

1. INTRODUCTION

Nowadays load capacity and life time of rolling bearings have become less
critical for certain applications in the car and household industry. Here, bearing
quality is increasingly determined by its acoustical or vibrational performance,
mainly driven by severe governmental regulations and customer demands. The
importance with respect to the vibrational behaviour is explained by the fact that
bearings are always in the transmission path of vibrations between the shaft
and the bearing housing. The determination of the transmission of vibrations
over a rolling bearing requires solving the equations that govern the dynamics of
the structural components and the EHL contacts connecting them. However,
nowadays computer capacity is still far from solving the equations
simultaneously. Therefore, in the present study, these problems have been solved
separately, i.e., relations based on numerical results of a single EHL contact
model have been incorporated into a structural bearing model.
In EHL theory, it is generally assumed that the rolling element is subjected to

a constant load. Entraining motion then causes the build up of pressure which
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results in a contact force, i.e., the integral over the pressure, which is normally

required to equal the applied load. This is suf®cient when studying the sti®ness

of the smooth EHL contact and only when studying the in¯uence of surface

features like roughness or waviness is a transient analysis required, see e.g.,

references [1±3]. However, when studying the interaction of structural vibrations

and the ¯uid ®lm the model should somehow be time-dependent and both

squeeze as well as entraining motion should be taken into account. To the

authors' knowledge, no studies of the full EHL contact problem exist which

focuses on the stiffness and damping, but related topics were investigated by e.g.,

Yang and Weng [4], Larsson [5] and Dowson and Wang [6]. A preliminary study

on ¯uid±structure interaction in an EHL circular contact, including squeeze and

entraining motion as well as inertia forces was reported in Wijnant and Venner

[7]. In this study, both a dry and lubricated contact were examined. For two

particular examples it shows that the lubricant damps rolling element vibrations

that result from a small initial deviation from equilibrium. Furthermore, it is

shown that any oscillation of the roller induces ®lm thickness modulations

whose wavelength is related to the roller's oscillating frequency in a dry contact

situation.

In this paper focus will be on stiffness and damping of the EHL contacts. The

stiffness has been accurately determined from steady state numerical solutions

for both circular and elliptical contacts. Damping values for the circular contact

have been obtained by ®tting numerical solutions of the full EHL problem to the

solutions of a simpli®ed spring±damper model. Unfortunately, despite the

second order discretization and the ®ne mesh that was used, the calculated

damping values are still dominated by the discretization error for small ellipticity

ratio's.

The dynamics of the structural elements of the bearing is described by a set of

non-linear equations of motion, with time-dependent coef®cients. Physical non-

linearities are introduced by the ball raceway contacts. Apart from the fact that

rolling elements can suffer from loss of contact, the contacts themselves, as can

be concluded from the EHL analysis, behave as stiffening springs. In case of

large contact angle variations, the bearing system also contains geometric non-

linearities (pendulum effect). The time-dependency of the coef®cients is caused

by the ®nite number of rotating rolling elements. The periodically varying

coef®cients give rise to parametrically excited vibrations, which again can cause

unstable behaviour of the bearing.

Rolling bearings are also known for their complex vibration generation

mechanisms. A number of important sources of vibration are out-of-roundness,

roughness, defects and dirt. In the production environment, standard tests exist

for detecting these excitation mechanisms. In this test, see Figure 1, the bearing

is mounted on a spindle rotating at a ®xed speed. The outer ring is loaded with a

pure axial force. The numerical examples in this paper are inspired by this

particular test.



DYNAMIC BEHAVIOUR OF BALL BEARINGS 581

2. THE EHL CONTACT MODEL

Consider a rolling element running on a lubricated raceway of a rolling
bearing, as given in Figure 2. Due to the applied load, both the rolling element
and the raceway will deform elastically and remote points beneath the surfaces
will approach each other. This approach, denoted by d in Figure 2, as a function
of the applied load is the ¯exibility of the contact. The stiffness, which will be
referred to as the EHL stiffness or EHL spring, is simply the inverse of this
¯exibility.
Adding forces due to the inertia of the system, the model allows one to

construct a simulation by which the damping, induced by the viscous losses in
the lubricant, can be determined. In this experiment, the rolling element is
slightly lifted (or given an initial velocity) from its equilibrium position and
subsequently released. This causes the rolling element to start a damped

Side view of contact area

Figure 1. Test apparatus for rolling bearings.
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Figure 2. Rolling element on raceway and the approximated spring±damper model.
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oscillatory motion around the equilibrium approach. Comparison between the
obtained solution and the solution of a simpli®ed model where the rolling
element is connected to the raceway by the EHL spring and a linear viscous
damper, see Figure 2, yields a value of the damping constant for which both
solutions are closest to each other.

3. EQUATIONS

In the present analysis the mathematical model used to solve these EHL
contact problems includes Reynolds equation, describing the ¯uid ¯ow in small
gaps, the ®lm thickness equation, Roelands' empirical viscosity±pressure relation
[8] and the Dowson and Higginson equation, relating compressibility to pressure
[9]. In the steady state situation the force balance equation was used whereas the
equation of motion has been adopted in transient simulations. The reader is
referred to reference [1] for an elaborate discussion on the equations used. The
equations were scaled by means of the Hertzian contact parameters (contact
width/length and mutual approach), i.e., the contact parameters when no
lubrication is present in the gap between the surfaces. All the Hertzian contact
parameters that were used are de®ned in Appendix B.
The dimensionless Reynolds equation reads:

@
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where l is the dimensionless parameter:

l � 6usZ0�2R�2
a3ph

E
K
� �2

, �2�

where K � K�1ÿ k2� and E � E�1ÿ k2� denote the complete elliptic integrals of
the ®rst and second kind, respectively. The dimensionless ®lm thickness is:

H�X, Y, T� � ÿ D� E ÿ k2K
Kÿ k2KX2 � Kÿ E

K ÿ k2KY2,

� 1
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where D is the mutual approach of two remote points in the bodies, the second
and third term are the undeformed geometry and the integral term represents the
elastic deformation. Finally, the equation of motion reads:
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d2D
dT2
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�
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P�X 0, Y 0, T� dX 0 dY 0 � 1, �4�

where O is the dimensionless frequency de®ned by:
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O2 � 8fR

mu2s

E
K : �5�

It is noted that in the steady state situation, the equation of motion reduces to
the force balance equation, i.e., the ®rst term in equation (4) vanishes. Roelands'
equation, assuming z=0�67, adds the parameter �a to the set of parameters. The
total number of variables then becomes four, i.e., the parameters l, �a, k and, for
the transient model, O. For historic reasons, results will be presented in terms of
a different set of independent parameters, i.e., the load parameter M and
lubricant parameter L. They can be shown to depend on l and �a.*

4. RESULTS

The equations, given in the previous section, were discretized using a second
order scheme with respect to both space and time and subsequently solved; see
reference [7]. Multilevel techniques, as described in reference [1], were used to
accelerate convergence and for the fast evaluation of the deformation integral.
The multilevel integration technique was modi®ed for elliptical contacts.
For small values of M the pressure build-up starts further upstream. Hence, at

these small values, the computational domain was increased to avoid so called
numerical starvation. The domain was covered by a grid having 2576 257
points for all steady state computations, whereas 1286 128 points were used in
the transient ones.
In this section, the stiffness of the EHL contact for k=1�0, 0�22 and 0�05 will

be presented for a variety of values of M and L. Approximate relations are
derived to obtain the stiffness for intermediate values. As mentioned in the
introduction, damping values and its approximate relation, will only be
presented for the circular contact case.

4.1. STIFFNESS

Figure 3 shows a typical example of the pressure and ®lm thickness in a steady
state EHL, contact. The ®lm thickness is roughly constant in the center of the
contact and a constriction can be observed near the outlet. The pressure
distribution is approximately Hertzian except near the inlet. Moreover, a second
pressure maximum can be observed near the outlet constriction.
For the circular contact, Figure 4 shows D1 for a number of values of M and

L (the subscript 1 has been added to indicate the approach at equilibrium).
From the ®gure one observes that D1 goes to unity for large values of M, thus
the approach is Hertzian at these values and it is legitimate to approximate the
stiffness of the contact by the Hertzian stiffness, i.e., f0 d3/2. However, D1
decreases with M and becomes negative, especially at larger values of L, showing
that in this case the stiffness of the lubricant can not be neglected.

*�a � L
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The results obtained for k=0�22 and k=0�05 show that this effect becomes
stronger for smaller values of k, i.e., the lubricant's stiffness becomes more
important at higher load numbers, see Appendix A.
Assuming that D1 is of the form (1ÿ pMq) and ®tting p and q for different

values of L, the following curve-®t has been found that closely approximates the
computed values:

D1�M, L� � 1ÿ p�L�Mq�L� where

p�L� � ��4ÿ 0�2L�7 � �3�5� 0�1L�7�1=7 and

q�L� � ÿ�0�6� 0�6�L� 3�ÿ1=2�: �6�
The function is shown by the solid line in Figure 4.
From the de®nition of D, the actual approach d follows from:

d1 � D1�M�f; . . .�, L�. . .�� 9f 2

8E 02R
4k2K3

p2E
� �1=3

, �7�

where D1 (M,L) is de®ned according to equation (6).
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Figure 4. D1 for different values of M and L and the aproximate relation equation (6).
+, L=0�0; *, L=1�0; }, L=2�5; ~, L=5�0; &, L=10; 6, L=25.

Figure 3. Pressure and ®lm thickness. M=250, L=10 and k=0�05. Direction of ¯ow is from
left to right.
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Thus, for any approach, given the parameters' speed, radius of curvature,
reduced elasticity modulus, viscosity and viscosity index of the lubricant, the
load f is given implicitly by equation (7). Since this function is very smooth, it
can easily be solved using modi®ed Newton Raphson iteration. As an example,
the resulting inner contact stiffness and the Hertzian stiffness is given in Figure 5
for some particular values of the viscosity, rolling speed etc. (Note that in this
case L is constant.) The ®gure shows that at small and negative approaches, the
stiffness of the lubricant completely dominates the stiffness.

4.2. DAMPING

The transient simulation, as described in section 2, has been carried out for a
number of parameters M and L, for k=1�0, i.e., circular contact. In the present
work, damping values will be presented for one value of the dimensionless
frequency O only, i.e., O=5�13. At O=5�13, one oscillation of the rolling
element takes approximately one time unit; see reference [7].
Figure 6 shows an example of the pressure and ®lm thickness at one particular

moment in the transient simulation. One clearly observes ¯uctuations in ®lm
thickness and pressure. These ¯uctuations are explained by the absence of
pressure-induced ¯ow in the high pressure region. Neglecting this ¯ow, the
Reynolds equation reduces to the advection equation ÿ�rHX ÿ �rHT � 0. Its
solution, �rH � �rH�Xÿ T�, indicates that any variation of the ®lm thickness
induced at the inlet is propagated through the high pressure zone virtually
undisturbed. In the present simulation, the modulations in the inlet region result
from the oscillating rolling element, but the same phenomenon has been
observed in both numerical and experimental studies on waviness and dents/
bumps. Because O is proportional to the time a ¯uid particle needs to pass
through the contact region, the wavelength of the ®lm thickness modulations is
determined by its value; see reference [7] for a more detailed discussion. Here,
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Figure 5. Inner ring stiffness for k=0�05 and L=10. Ð, EHL contact; - - -, dry contact.
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emphasis is on the in¯uence of the lubricant on the oscillating rolling element's
center of gravity.
The solid line in Figure 7 shows D as a function of time in a simulation for

M=200, L=10, O=2�5 and k=1�0. It shows that, as explained before, the
lubricant damps any oscillation as a result of a small deviation from the
equilibrium position.
As a next step, this transient response will be characterized by comparison

with the EHL spring, de®ned before, and a linear viscous damper, i.e., the values
of the damping constant C will be obtained for which the response, given in
Figure 7, is closest, in a least squares sense, to the response of a rolling element
connected to the raceway by an EHL spring and linear viscous damper, as was
depicted in Figure 2.
The second order differential equation describing the EHL spring±damper

model reads:

1

O2

d2D
dT2
� C

dD
dT
� I�D� � 1, �8�

Figure 6. Pressure and ®lm thickness in the transient simulation. M=200, L=10, O=10 and
k=1�0. The direction of ¯ow is from left to right.
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Figure 7. Transient response for M=200, L=10, O=2�5 and k=1�0. Ð, EHL; - - -,
spring±damper.
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where C is the dimensionless damping constant de®ned by

C � c
aus
4fR

K
E : �9�

I�D� is the contact force, obtained from the EHL spring in dimensionless
variables:

D � D1�IM, L��I�2=3: �10�
Since the load was only given implicitly, I�d� has been introduced to formally
describe the explicit relation between approach and contact force. Only in the
case of equilibrium is the contact force equal to the applied load, i.e.,
I�D1� � 1. For constant C, the solution of equation (8) can easily be obtained
using the Newmark integration scheme combined with Newton Raphson
iteration to calculate the force due to the EHL spring.
The response of the EHL spring±damper model for M=200, L=10, O=2�5

and k=1 is plotted by the dashed line in Figure 7. The damping for which the
response was closest to the calculated response was C1 0�005. For different
values of M and L and k=1�0, Figure 8 shows C obtained in the way described
before. As can be observed, the damping decreases with M and L. This can be
explained by the ``boundary layer'' that exists just upstream of the Hertzian
contact region. It can be shown that viscous losses predominantly occur inside
this layer and because it decreases for increasing M and L, damping decreases as
well.
To obtain the damping constant for intermediate values of M and L, the

following curve-®t provides a convenient approximation:

C�M, L� � r�L�Ms�L� where

r�L� � 0�98ÿ L=60 and

s�L� � ÿ0�83ÿ L=125: �11�
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Figure 8. C for different values of M and L and the approximated equation (11). +, L=0�0;
*, L=1�0; }, L=2�5; ~, L=5�0; &, L=10; 6, L=25.
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Numerical experiments show that the damping increases with decreasing
ellipticity. Despite the present second order discretization and the ®ne mesh that
is used, the discretization error is still large for very small ellipticity ratios, i.e.,
kE 0�1. This error manifests itself in an increase in damping, hence it is
generally referred to as numerical damping. Because the physical damping
becomes comparable to the numerical damping, no quantitative data will be
presented for elliptical contacts.

5. THE STRUCTURAL DYNAMICS MODEL

A frictionless non-linear dynamic model is developed that describes the
interaction between the different structural components of a ball bearing, i.e.,
the inner ring, the outer ring and the rolling elements. Except for the local
contact deformations, the inner ring is modelled as a rigid body having six
degrees of freedom. However, the rotational velocity around the bearing axis of
symmetry is assumed to be constant. This leaves only ®ve degrees of freedom for
the inner ring. If it is desired, the inner ring can be coupled to a ¯exible shaft.
However, for the particular example in this paper, the shaft is assumed to be
rigidly connected to the world. This assumption is allowed because the outer ring
can move freely. The result is that all the inner ring co-ordinates are prescribed
and do not constitute part of the solution.
The rolling elements are modelled as point masses having only two degrees of

freedom each, a radial and an axial displacement co-ordinate. The tangential co-
ordinate of the qth rolling element is prescribed by the angular cage speed
according to

yq � omt� �qÿ 1�Dy, �12�
where Dy=2p/Z and Z is the number of rolling elements. In case pure rolling is
assumed in the contacts, om is related to the angular shaft speed oi by

om � oi

2
1ÿD cos�a�

dm

� �
: �13�

The cage separates the rolling elements and prevents them from sliding against
each other. Cage forces are assumed to be small compared to the contact forces
between the rolling elements and the raceway. The function of the cage is
accounted for by assuming a constant pitch velocity for each rolling element.
Unlike the inner ring, the outer ring is modelled as a ¯exible body using ®nite

element techniques. The applied ®nite element model is given in Figure 9. If it is
desired, a ¯exible housing can be added to the outer ring resulting in a single
FEM model for the outer ring and the bearing housing. In that case an ideal
outer ring housing interface is assumed (see reference [10]). For an accurate
description of the outer ring a large number of elements is required resulting in
unacceptably long computation times in the case of transient calculations. A
component mode synthesis technique (CMS) is introduced to reduce the number
of degrees of freedom. The CMS technique, which is based on the Ritz assumed
de¯ection method, describes the discetized displacement ®eld of the outer ring
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with a series of suitable shape functions, also referred to as the generalized co-
ordinates

u�xj, t� �
XN
i�1

Ci�xj�pi�t� � �CCCj�fpg: �14�

The reduced mass and stiffness matrices are then obtained by

�m� � �CCCj�T�mj��CCCj�, �k� � �CCCj�T�kj��CCCj�: �15, 16�
The reduced system must still give an accurate description of the mode shapes in
the frequency range of interest. Furthermore, it must be able to describe the
static solution and ful®ll the boundary conditions. It is obvious that natural
mode shapes alone do not ful®ll these requirements. In the literature several
techniques have been developed, such as the Craig±Bampton method and the
method of reduced ¯exibilities. However, for several reasons, these techniques
are not directly applicable to the bearing problem. First of all, neither technique
can describe the effect of moving loads, because the interface nodes are ®xed.
Secondly, the discrete description of the shape functions gives rise to undesired
arti®cial impact phenomena.
A new CMS technique is introduced, based on the Craig±Bampton method in

the sense that it also uses ®xed normal modes and (redundant) constraint modes
but, instead of using a number of unit displacement functions, it uses a series of
analytical functions for the interface nodes. The reason for using constraint
modes instead of ¯exibility modes is the ef®cient coupling procedure. For a
bearing this is very important regarding the many ball raceway contacts.
It is assumed that all points on the raceway can come into contact with the

rolling elements and that the contact forces are always directed normal to the
raceway surface. This means that every node on the raceway can be regarded as
an interface node and that analytical functions are required for the radial and
axial displacement ®eld on the raceway. In the present study, the displacements
of the raceway in the circumferential direction are described by Fourier series

Figure 9. Finite element model used for the outer ring.
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whereas for the axial displacements Chebyshev polynomials were used:

ur �
XNf

n�0
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ar cos�ny� cos m arccos
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uz �
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n�0
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m�0
az cos�ny� cos m arccos

r
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XNf

n�1

XNc

m�0
bz sin�ny� cos m arccos

r

r0
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: �18�

An important feature of these series is that they are able to describe both rigid
body translations and rotations, as well as twisting of the outer ring. With the
present technique, the FEM model with.several thousands of degrees of freedom
is reduced to a model with approximately 100 degrees of freedom.
Together with the equations for the stiffness and damping, as derived in

section (2), one can construct the Lagrangian equations of motion for the
bearing outer ring:

�m�f�qg � �k�fqg �
XQ
s�1

Fsor
@Fsor

@q
�
XQ
s�1

Fsor
@Fsor

@ _q
� fFg: �19�

The equation of motion for the rolling elements read:

m�vs � Fsor
@Fsor

@vs
� Fsir

@Fsir

@vs
� Fsor

@Fsor

@ _vs
� Fsir

@Fsir

@ _vs
� 1

2
mreo2

mdm, �20�

m�ws � Fsor
@Fsor

@ws
� Fsir

@Fsir

@ws
� Fsor

@Fsor

@ _ws
� Fsir

@Fsir

@ _ws
� 0, �21�

for s=1 . . .Q. In the above equations, Fsir and Fsor contain both restoring and
dissipative forces. The equations of motion are integrated by means of the
Newmark time integration method in combination with a modi®ed Newton
Raphson iteration. A fast implementation is possible, making use of analytical
approximations to the contact forces.

6. RESULTS

6.1. BEARING EIGENFREQUENCIES

The geometry of the bearing used for this numerical study resembles a DGBB
6202, i.e., eight rolling elements, a 35-mm outer bore and a 15-mm inner bore.
The bearing is subjected to a pure axial load. Because of this preload, the initial
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clearance vanishes and all rolling elements are in contact with the raceways. The

static equilibrium is determined to obtain the mean stiffness matrix. Together

with the mass matrix, the eigenfrequencies and mode shapes of the undamped

non-rotating bearing system can be calculated; see Table 1. In the present study,

focus will be on the bearing outer ring modes.

In the case of a non-rotating bearing, the EHL contacts behave as dry

contacts. Once the bearing rotates, a sum speed is created and a ¯uid ®lm is built

up between the rolling elements and the raceway. This ®lm in¯uences the

stiffness and thus the eigenfrequencies of the bearing. Obviously, in the case of a

dry contact model the eigenfrequencies are independent of the rotational speed.

In Figure 10 the different bearing eigenfrequencies are plotted against the

rotational speed. The eigenfrequencies are scaled on the dry contact situation.

The following lubrication parameters are used: the pressure±viscosity coef®cient

a � 1�0610ÿ8 Paÿ1 and the viscosity at room temperature Z0=0�1 Pa s.

It is observed that all the eigenfrequencies increase, except for the

eigenfrequency of the axial mode shape. An increase in the eigenfrequency could

be explained by the stiffening effect of the lubricant. However, this does not

explain the decrease in eigenfrequency of the axial mode. To understand this

effect, the contact angle and contact force are plotted against the rotational

speed in Figures 11 and 12, respectively.

TABLE 1

Eigenfrequencies of a non-rotating DGBB 6202, Fz=60 N

No. Frequency (kHz) Mode shape

1,2 0�8 Tilting mode
3 3�3 Axial mode
4,5 9�0 Radial mode
6,7 11�8 Flexural mode out of plane
8,9 12�7 Flexural mode in plane
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Figure 10. Effect of rotational speed on the bearing eigenfrequencies.
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Because of the increasing ®lm that is built up in the contact, the contact forces
increase. However, in the axial direction equilibrium must be maintained with
the applied external force. The only way out for the bearing is to adjust the
contact angles. The bearing stiffness heavily depends on the angle of contact.
When the contact angle decreases, the radial stiffness component increases and
the axial stiffness component decreases. It is concluded that this effect must be
much stronger than the stiffening effect due to higher contact loads. An increase
in the ®rst bearing eigenfrequency as a function of the rotational speed has also
been found experimentally by Dietl and Zeillinger [11].

6.2. MODAL DAMPING

To estimate modal damping coef®cients, transfer functions of the bearing have
to be determined. The most effective way to do so, is to apply a random force on
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the system. In this numerical example, the random force is applied at one rolling
element. The calculated time signal of the generalized co-ordinates is then
transformed into the natural co-ordinates of the bearing. Each co-ordinate now
represents a single degree of freedom. In Figure 13, the mobility of the ®rst
tilting mode is depicted.
The damping is estimated by analyzing the real part of the complex transfer

functions. Near the resonance frequency the real part has a maximum at o1 and
a minimum at o2. The EHL model assumes viscous damping and the viscous
damping coef®cient estimated from EHL calculations equals 100 N s/m. The
bearing is loaded with an axial force of 100 N. The dimensionless viscous
damping coef®cient is given by

2z � �o1=o2�2 ÿ 1

�o1=o2�2 � 1
: �22�

The dimensionless viscous damping coef®cient z of each mode is presented in
Table 2.
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Figure 13. Mobility function ®rst mode DGBB 6202.

TABLE 2

Modal damping coefficients DGBB 6202, Fz=100 N

No. Frequency (kHz) Mode shape z

1,2 1�0 Tilting mode 0�001
3 3�8 Axial mode 0�02
4,5 9�8 Radial mode 0�06
6,7 11�8 Flexural mode out of plane 0�01
8,9 13�6 Flexural mode in plane 0�07
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7. CONCLUSION

The stiffness and damping of an elliptical EHL contact have been obtained for
a wide variety of load and lubricant parameters using fast and ef®cient
numerical algorithms and have been approximated by analytical relations. The
incorporation of these relations into a structural dynamics model, that
incorporates a ¯exible outer ring, proved to work quite well. It captures the
major in¯uence of the lubricant on the dynamic behaviour of the complete
bearing. This in¯uence, as compared to the dry contact situation, is moderate for
medium loads and low rotational speeds but increases for low loads and higher
speeds. From the simulations, it is observed that the eigenfrequencies of a
lubricated bearing shift as a result of the decreased contact angles. Moreover, the
mobility functions show large differences in modal damping at the different
bearing resonances. The tilting modes, for instance, are only slightly damped,
indicating that other sources of damping which are not incorporated in the
model might become more important.
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APPENDIX A: APPROACH IN ELLIPTICAL CONTACTS

Similar to the circular contact, the dimensionless approach D1 has been
approximated by 1ÿ p�L�Mq�L� where, for k=0�22:

p�L� � ��13�6ÿ 0�6L�5 � �10� 0�14L�5�1=5, �23�

q�L� � ÿ��0�19� �0�88ÿ 0�028L�5��1=5, �24�
and for k=0�05

p�L� � 47�6ÿ 3�35L� 0�20L2 ÿ 0�0036L3, �25�

q�L� � ÿ��0�752ÿ 0�04L� 0�0005L2��3 � �0�8ÿ 0�002L�3�1=3: �26�
To obtain the dimensionless approach for intermediate values of k, interpolation
between equation (6) and the equations given above may be carried out.

APPENDIX B: NOMENCLATURE

a Hertzian contact length a � �3fR=E0�1=3�2kE=p�1=3
ar,z amplitudes Fourier/Chebyshev series
b Hertzian contact width b= a/k
c Hertzian approach c � �a2=�2R���K=E�
c damping constant
C dimensionless damping C � c�aus=4fR��K=E�

E 0 reduced modulus of elasticity 2=E0 � 1ÿ �21
E1

� 1ÿ �22
E2dm rolling element diameter

D diameter bearing
f load
For outer ring load
Fir inner ring load
Fz axial load
H dimensionless ®lm thickness H � h�2R=a2��E=K�
k stiffness
[k] stiffness matrix

L dimensionless lubricant parameter L � aE0
Z0us
E0Rx

� �1=4

m mass rolling element
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[m] mass matrix

M dimensionless load parameter M � f

E0R2
x

E0Rx

Z0us

� �3=4

p pressure
ph maximum Hertzian pressure ph � 3f=�2pab�
P dimensionless pressure P � p=ph
q displacements outer ring
R reduced radius of curvature Rÿ1 � Rÿ1x � Rÿ1y

Rx reduced radius of curvature in x-direction Rÿ1x � Rÿ1x1 � Rÿ1x2

Ry reduced radius of curvature in y-direction Rÿ1y � Rÿ1y1 � Rÿ1y2

S computational domain
t time
T dimensionless time T � tus=�2a�
u displacement ®eld
us sum velocity us � u1 � u2
v displacement rolling element (radial)
w displacement rolling element (axial)
x co-ordinate in direction of ¯ow
X dimensionless co-ordinate X � x=a
y co-ordinate perpendicula to x
Y dimensionless co-ordinate Y � y=b
z pressure viscosity parameter (Roelands)
a pressure viscosity index
a contact angle
�a dimensionless viscosity parameter �a � aph
d mutual approach
D dimensionless mutual approach D � d�2R=a2��E=K�
Z viscosity
Z0 viscosity at ambient pressure
�Z dimensionless viscosity �Z � Z=Z0
z viscous damping
yq tangential co-ordinate of roller q
C generalized co-ordinates
k ellipticity ratio k � a=b

l dimensionless speed parameter l � 6Z0us�2R�2
a3ph

E
K
� �2

�1,2 Poisson's ratio body 1,2
r density
r0 density at ambient pressure
�r dimensionless density �r � r=r0
on cage speed
oi shaft speed
o1,2 eigenfrequencies
O dimensionless frequency O2 � �8fR=�mu2s ���E=K�
K elliptic integral of the ®rst kind
E elliptic integral of the second kind
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